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Abstract. Deformed squeezed states are introduced as the q-analogues of the conventional undeformed
harmonic oscillator algebra squeezed states. It is shown that the boundary vectors in the matrix-product
states approach to multiparticle diffusion processes are deformed coherent or squeezed states of a deformed
harmonic oscillator algebra. A deformed squeezed and coherent-states solution to the n-species stochastic
diffusion boundary problem is proposed and studied.

1 Introduction

Coherent states have a wide range of applications to vari-
ous problems in many different areas of physics. Introduced
by Schrödinger [1] in the early days of quantum mechan-
ics, the harmonic oscillator coherent states were developed
for the first time by Glauber for quantized electromagnetic
radiation [2]. They were generated by the action of the dis-
placement operator on the ground state, or equivalently
defined as eigenstates of the annihilation operator, and
turned out to be orbits of the Weyl–Heisenberg group.
This important property led to group-theoretical general-
izations by Perelomov [3] and Gilmore [4] for an arbitrary
Lie group and to the formulation of coherent states as
orbits of the group with respect to a stationary subgroup.

With the invention of quantum groups and the hopes
that rich non-commutative structures will amount to new
results in field theory and statistical physics, generalized
coherent states [5, 6] for the deformed Heisenberg algebra
and for compact quantum groups [6] were introduced and
studied.

Coherent states exhibit two basic characteristics, name-
ly continuity and resolution of unity, which are the min-
imum requirements for a set of vectors to be referred to
as generalized coherent states. According to Klauder [7], a
coherent state |l〉 where the (complex) label l is an element
of an appropriate label space L, endowed with the notion
of topology, is a vector of a Hilbert space H such that
(i) the vector |l〉 is strongly continuous in the label l,
(ii) there exists a positive measure δl on L so that the unit
operator on H admits a resolution of unity I =

∫ |l〉〈l|δl.
Consequently any quantum state |ψ〉 can be repre-

sented by its projections onto the different coherent states
ψ(l) = 〈l|ψ〉, and similarly any operator A can be repre-
sented by its coherent-states matrix elements 〈l|A|l′〉

〈l|l′〉 .

By their origin the coherent states are quantum states,
but at the same time they are parametrized by points in
the phase space of a classical system. This makes them
very suitable for the study of systems where one encoun-
ters a relationship between classical and quantum descrip-
tions. From this point of view, interacting many-particle
systems with stochastic dynamics provide an appropriate
playground to enhance the utility of generalized coherent
states.

A stochastic process is described in terms of a mas-
ter equation for the probability distribution P (si, t) of a
stochastic variable si = 0, 1, 2, . . . , n − 1 at a site i =
1, 2, . . . , L of a linear chain. A configuration on the lat-
tice at a time t is determined by the set of occupation
numbers s1, s2, . . . , sL and a transition to another config-
uration s′ during an infinitesimal time step dt is given
by the probability Γ (s, s′)dt. The time evolution of the
stochastic system is governed by the master equation

dP (s, t)
dt

=
∑
s′
Γ (s, s′)P (s′, t) (1)

for the probability P (s, t) of finding the configuration s at
a time t. With the restriction of dynamics that changes of
configuration can only occur at two adjacent sites, the rates
for such changes depend only on these sites. The two-site
rates Γ ≡ Γ ik

jl , i, j, k, l = 0, 1, 2, . . . , n− 1 are assumed to
be independent of the position in the bulk. At the bound-
aries, i.e. sites 1 and L, additional processes can take place
with single-site rates Li

k and Ri
k, i, k = 0, 1, . . . , n− 1. For

processes where each lattice site can be occupied by a finite
number of different-type particles, the master equation can
be mapped to a Schrödinger equation in imaginary time
of an n-state quantum spin-S Hamiltonian (n = 2S + 1
distinct states) with nearest-neighbor interaction in the
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bulk and single-site boundary terms

dP (t)
dt

= −HP (t), H =
∑

j

Hj,j+1 +H(L) +H(R).

(2)
The probability distribution thus becomes a state vector in
the configuration space of the quantum spin chain and the
ground state of the Hamiltonian, in general non-Hermitian,
corresponds to the steady state of the stochastic dynamics
where all probabilities are stationary.

The mapping provides a connection with integrable
quantum spin chains and allows for exact results of the
stochastic dynamics with the formalism of quantum me-
chanics.

A different description, which is also based on the rela-
tionship of a Markov process probability distribution with
the quantum Hamiltonian picture, is the matrix-product
states approach to stochastic dynamics [8, 9]. The idea is
that the stationary probability distribution, i.e. the ground
state of a quantum Hamiltonian with nearest-neighbor in-
teraction in the bulk and single-site boundary terms, can
be expressed as a product of (or a trace over) matrices
that form a representation of a quadratic algebra

Γ ik
jl DiDk = xlDj − xjDl, i, j, k, l = 0, 1, . . . , n− 1,

(3)
determined by the dynamics of the process. For diffusion
processes that will be considered in this paper, Γ ik

ki = gik

and the n-species diffusion quadratic algebra has the form

gikDiDk − gkiDkDi = xkDi − xiDk, (4)

where gik and gki are positive (or zero) probability rates,
xi are c-numbers and i, k = 0, 1, . . . , n − 1. (No summa-
tion over repeated indices in (4).) The algebra has a Fock
representation in an auxiliary Hilbert space where the n
generators D act as operators. For systems with periodic
boundary conditions, the stationary probability distribu-
tion is related to the expression

P (s1, . . . , sL) = Tr(Ds1Ds2 . . . DsL
). (5)

When boundary processes are considered the stationary
probability distribution is related to a matrix element in
the auxiliary vector space

P (s1, . . . , sL) = 〈w|Ds1Ds2 . . . DsL
|v〉 (6)

with respect to the vectors |v〉 and 〈w|, determined by the
boundary conditions

〈w|(Lk
iDk + xi) = 0, (Rk

iDk − xi)|v〉 = 0, (7)

where the x-numbers sum up to zero, because of the form
of the boundary rate matrices

Li
i = −

n−1∑
j=0

Li
j , Ri

i = −
n−1∑
j=0

Ri
j ,

n−1∑
i=0

xi = 0.

(8)

These relations simply mean that one associates with an
occupation number si at position i a matrix Dsi

= Dk

(i = 1, 2, . . . , L; k = 0, 1, . . . , n−1) if a site i is occupied by
a k-type particle. The number of all possible configurations
of an n-species stochastic system on a chain of L sites is
nL and this is the dimension in the configuration space of
the stationary probability distribution as a state vector.
Each component of this vector, i.e. the (unnormalized)
steady-state weight of a given configuration, is a trace or an
expectation value in the auxiliary space given by (5) or (6).
The quadratic algebra reduces the number of independent
components to only monomials symmetrized upon using
the relations (4).

The algebra (4) admits an involution through the map-
ping Di → D+

i , (Di → −D+
i ) and g+

ik = −gki (g+
ik = gki)

for real parameters xi = x̄i.
Relations (4) allow an ordering of the elementsDk and,

in order to find the stationary probability distribution, one
has to compute traces or matrix elements with respect to
the vectors |v〉 and 〈w| of ordered monomials of the form

Dm1
s1
Dm2

s2
. . . Dml

sl
, (9)

where s1 < s2 < . . . < sl, l ≥ 1 and m1,m2, . . . ,ml are
non-negative integers. Monomials of given order are the
Poincaré–Birkhoff–Witt (PBW) basis for polynomials of
fixed degree, as is the stationary probability distribution.
The n elements Dk obeying the n(n − 1)/2 relations (4)
generate an associative algebra with an unit e for which
the ordered monomials (9) form a linear basis, the PBW
basis.

In the known example of exactly soluble 2- and 3-
species models, through the matrix-product ansatz, the
solution of the quadratic algebra is provided by a de-
formed bosonic oscillator algebra, if both gik and gki differ
from zero, or by infinite-dimensional matrices, if gik = 0.
In the general n case, because of the ordering procedure,
the solution of the quadratic algebra has to be consistent
with the diamond lemma in ring theory, also known as the
braid associativity condition in quantum groups. As shown
in [10, 11], if all parameters xi are equal to zero on the
RHS of (4), the homogeneous quadratic algebra defines a
multiparameter quantized non-commutative space realized
equivalently as a q-deformed Heisenberg algebra [12,13] of
n oscillators depending on n(n− 1)/2 + 1 parameters (in
general on n(n− 1)/2 + n parameters):

aia
+
i − ria

+
i ai = 1, (10)

a+
i a

+
j − qjia

+
j a

+
i = 0,

aiaj − qjiajai = 0,

aia
+
j − q−1

ji a
+
j ai = 0,

where i < j; i, j = 0, 1, . . . , n − 1, and the deformation
parameters ri, qij are model-dependent parameters given
in terms of the probability rates, and the associative al-
gebra generated by the elements Di in this case belongs
to the universal enveloping algebra of the multiparameter
deformed Heisenberg algebra. For a non-homogeneous al-
gebra with x-terms on the RHS of (4), only then is braid
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associativity satisfied if, out of the coefficients xi, xk, xl

corresponding to an ordered triple DiDkDl, either one
coefficient x is zero or two coefficients x are zero, and
the rates are respectively related. The diffusion algebras
in this case can be obtained by either a change of ba-
sis in the n-dimensional non-commutative space or by a
suitable change of basis of the lower-dimensional quan-
tum space realized equivalently as a lower-dimensional de-
formed Heisenberg algebra. The appearance of the non-
zero linear terms in the RHS of the quantum plane rela-
tions leads to a lower-dimensional non-commutative space.
Proposition I. The boundary vectors with respect to which
one determines the stationary probability distribution of
the n-species diffusion process are generalized, coherent or
squeezed states of the deformed Heisenberg algebra under-
lying the algebraic solution of the corresponding quadratic
algebra.

This paper is organized as follows. We first review the
basic properties of the deformed oscillator coherent states
that are known in the literature. We then define a de-
formed squeezed state of a pair of deformed oscillators
by analogy with the conventional squeezed states as the
eigenstate of the deformed boson operators’ linear com-
bination and study their squeezing properties. Such a q-
generalization of the conventional undeformed squeezed
states is not known. As a physical application of the de-
formed coherent and the considered squeezed states we
propose and study the boundary problem solution of the
general n-species stochastic diffusion process. We argue
that, depending on the boundary conditions, the boundary
vectors are either the deformed boson operator coherent or
the suggested deformed squeezed states. We finally com-
ment on the two-species simple exclusion process to serve
as an example of an unified description in terms of coher-
ent states of both the partially and the fully asymmetric
processes.

2 Coherent states of a q-deformed Heisenberg
algebra

The conventional harmonic oscillator coherent states are
defined either
(i) directly by the action of the displacement operator
D(z) = exp(za+ − z̄a) on the vacuum, or
(ii) as an eigenstate of the annihillation operator a. It is
the displacement operator method that best reveals the
group geometric properties of the coherent states; it al-
lowed for generalization to arbitrary Lie groups, but it
turned out not to work successfully for quantum groups
with conventional complex variables z. The generalization
to the deformed boson case went along the annihilation
operator method and we review here the main lines of the
known results [5].

We consider an associative algebra with generators a,
a+ and q±N with the defining relations

aa+ − qa+a = 1, qNa+ = qa+qN , qNa = q−1aqN ,
(11)

where 0 < q < 1 is a real parameter and

a+a =
1 − qN

1 − q
≡ [N ]. (12)

A Fock representation is obtained in a Hilbert space span-
ned by the orthonormal basis (a+)n√

[n]!
|0〉 = |n〉, n = 0, 1, 2, . . .

and 〈n|n′〉 = δnn′ :

a|0〉 = 0, a|n〉 = [n]1/2|n−1〉, a+|n〉 = [n+1]1/2|n+1〉.
(13)

The Hilbert space consists of all elements |f〉 =∑∞
n=0 fn|n〉 with complex fn and finite norm with respect

to the scalar product 〈f |f〉 =
∑∞

n=0 |fn|2. The q-deformed
oscillator algebra has a Bargmann–Fock representation on
the Hilbert space of entire analytic functions.

Generalized or q-deformed coherent states are defined
as the eigenstates of the deformed annihilation operator
a and are labelled by a continuous (in general complex)
variable z:

a|z〉 = z|z〉, |z〉 =
∞∑

n=0

zn√
[n]!

|n〉. (14)

These vectors belong to the Hilbert space for |z|2 < [∞] =
1

1−q .
The scalar product of two coherent states for different

values of the parameter z is non-vanishing:

〈z|z′〉 =
∞∑
0

(z̄z′)n

[n]!
= ez̄z′

q , (15)

and they can be properly normalized with the help of the
q-exponent on the RHS of (15):

|z〉 = expq

(
−|z|2

2

)
expq(za

+)|0〉. (16)

The q-deformed coherent states reduce to the conventional
coherent states of a one-dimensional Heisenberg algebra
in the limit q → 1−. These generalized coherent states
carry the basic characteristics of the conventional ones,
namely continuity and completeness (resolution of unity).
We briefly sketch the main properties as they were ana-
lyzed in relation to the deformed algebra representation
on the Hilbert space of entire analytic functions. The rep-
resentation space is spanned by the orthonormal basis of
polynomials un = zn√

[n]!
, n = 0, 1, 2, . . . and a scalar prod-

uct of two elements g(z) and f(z) is given by

〈g|f〉 =
∫
ḡ(z)f(z) expq(−z̄z)d2

qz. (17)

The integration in (17) over the complex variable z =
|z| exp(iφ) is performed as

∫
d2

qz =
1
2π

2π∫
0

dφ

∞∫
0

dq|z|2, (18)



406 B. Aneva: Deformed coherent and squeezed states of multiparticle processes

and the Jackson q-integral of a function F (x) of a real
variable x is defined as the inverse of the q-derivative Dq

∞∫
0

F (x)dqx = (1 − q)x
∞∑

l=0

qlF (qlx),

Dqf(z) =
f(z) − f(qz)

z − qz
. (19)

The scalar product in (17) allows for a resolution of the
unit operator:

I =
∫

|z〉〈z| expq(−|z|2)d2
qz. (20)

Using the completeness relation one can expand any
state |f〉 in the coherent states

|f〉 =
∫

d2
qz|z〉 expq(−|z|2)〈z̄|f〉, (21)

where the function f(z) = 〈z̄|f〉 determines the state com-
pletely and is called the symbol of the state. The com-
pleteness relation gives rise to a functional representation
of operators as well

(Af)(z) =
∫
A(z, z′)f(z′) expq(z̄′z) expq(−z̄′z′)d2

qz
′,

(22)
A(z, z′) = 〈z|A|z′〉

〈z|z′〉 being the covariant symbol of the op-
erator A. The trace of the operator A is given by TrA =∫

d2
qz expq(−|z|2)〈z|A|z〉. One thus has

〈z̄|a+|f〉 = zf(z), (23)

〈z̄|a|f〉 = Dqf(z),

〈z̄|N |f〉 = z
d
dz
f(z),

which is the Bargmann–Fock representation of the de-
formed oscillators and number operator.

As shown in [5], in the limit q → 1−, the Bargmann–
Segal representation space of the undeformed algebra on
a Hilbert space of entire functions is obtained, while in
the limit q → 0, the Hilbert space becomes the Hardy–
Lebesgue space of functions on the circle |z| = 1.

3 Squeezed states
of a deformed oscillator algebra

The conventional squeezed states [14] for the harmonic os-
cillator operators are obtained directly from a conventional
coherent state |z〉 by applying the squeezed operator S(ξ):

S(ξ)D(z)|0〉 = |z, ξ〉, (24)

where the unitary operator S(ξ) depends on a (complex)
parameter ζ. The squeezed state is an eigenstate of the
transformed annihilation operator a,

S(ξ)aS+(ξ) = A(a+, a), (25)

so that one has

A(a+, a)|z, ξ〉 = z|z, ξ〉. (26)

The unitary transformation leaves the commutator [a, a+]
invariant and can be realized as a linear canonical trans-
formation

A(a+, a) = µa+ νa+, (27)

with |µ|2 − |ν|2 = 1. The unitary operator that leads to
such a linear transform has the form

S(ξ) = exp
1
2
(ξ(a+)2 − ξ̄a2), (28)

and with real ξ = s one has A = a cosh s+ a+ sinh s. The
squeezed states are also equivalently defined as coherent
states of the group SU(1, 1) [3] by the action of the raising
operator K+ = 1

2 (a+)2 on the vacuum:

|s〉 = exp
1
2
s(a+)2|0〉. (29)

Attempts at generalizing these definitions to the case
of deformed oscillators have not yet been quite success-
ful. As for the first definition there were discussions and
argumentations that a squeezed operator (as well as a dis-
placement operator D(z)) can be consistently defined [15]
assuming the variables z, ξ to be non-commuting. On the
other hand, the generalization of the second definition to
the deformed case gives a state expq

1
[2]ξ(a

+)2|0〉 that is
not normalizable [16]. However, since the action of the
(conventional) unitary squeezed operator results in a lin-
ear transformation on the oscillators, we are lead by this
idea to keep the linear structure of the deformed squeezing
operator and assume an analogous definition.
Proposition IIa. Let a and a+ generate a deformed Heisen-
berg algebra in the equivalent commutator form of a defin-
ing relation

[a, a+] = qN , (30)

Then there is a two-parameter-dependent linear map to a
pair of “quasi”-oscillators with (the symbol of) a “quasi-
particle” number operator N

A = µa+ νa+, A+ = µ̄a+ + ν̄a. (31)

These operators generate a deformed Heisenberg alge-
bra

[A,A+] = qN , (32)

provided
qN = (|µ|2 − |ν|2)qN . (33)

In the limit q → 1− the relation between the parameters
of the conventional squeezed state is recovered [17]. In
the deformed “quasi”-oscillator algebra Fock representa-
tion space with a vacuum |0〉s one can define a normalizable
coherent state |ζ〉s as the eigenvector of the annihilation
operator A:

|ζ〉s = e
− 1

2 |ζ|2
q eζA+

q |0〉s. (34)

In order to generate a deformed squeezed state directly
one needs of course to explicitly construct an operator
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Sq(µ, ν), the q-analogue of the squeezed operator whose
transformation of the oscillators amounts to the linear map
in (31), SqaS

−1
q = A. This question remains open despite

the encouraging fact that the linear transformation has
the proper limit q → 1−.
Proposition IIb. A squeezed state of the deformed creation
and annihilation operators is a normalized solution of the
eigenvalue equation

(µa+ νa+)|ζ, µ, ν〉s = ζ|ζ, µ, ν〉s = A|ζ〉s. (35)

This proposition is motivated by the analogy with the
non-deformed case and by the fact that such normalized
eigenstate vectors of the above linear combination of q-
deformed oscillators appear in the solution of the boundary
problem of a many-particle non-equilibrium system.

The conventional undeformed squeezed states were
originally introduced as states in which one of the vari-
ances of the two quadratures of the oscillator operators
was smaller than the variance 1

2 in the Glauber coherent
states minimizing the Heisenberg uncertainty relation. A
generalization [18–20] to any two Hermitian operators x,
p defines a squeezed state as
(i) a state in which one of the two variances (δx)2 or
(δp)2 is smaller than the modulus half of the commutator
mean value in this state, 1

2 |〈[x, p]〉|, or via the minimum-
uncertainty method as
(ii) a state in which one of the two variances is smaller than
their common minimal value δ2min for which the equality
(δx)2 = (δp)2 = 1

2 |〈[x, p]〉| holds. Eigenstates of linear x–p
combinations exhibit strong squeezing properties depend-
ing only on the parameters involved in the combination.
Upon adjusting these parameters one can achieve that ei-
ther variance could reach the limit value zero.

Even though in the proposed definition (34) and (35) of
the squeezed state as an eigenstate |ζ〉s of the annihilation
operator A, the µ, ν dependence seems to be suppressed,
such states exhibit squeezing properties similar to the con-
ventional ones. To show this we consider the Hermitian
quadrature operators

x =
1√
2
(a+ a+), p =

1
i
√

2
(a− a+), (36)

where the boson operators obey the relation of the form
(30) and consequently the operators x and p satisfy the
deformed canonical commutation relation

[x, p] = iqN . (37)

The number operator N in the Fock space boson os-
cillator representation is positive definite and Hermitian.
Hence for 0 < q < 1 the deformed operator qN is Hermitian
too. Any two Hermitian operators obeying a commutation
relation of the type (37) satisfy a generalized Heisenberg–
Robertson inequality of the form

(δx)2(δp)2 ≥ 1
4
|〈[x, p]〉|2, (38)

where (δx)2 = 〈(x−〈x〉)2〉 and similary (δp)2 = 〈(p−〈p〉)2〉
are the variances in any state. This is the accepted form of

a deformed uncertainty relation for the two quadratures
x and p. In the limit q → 1− the commutator (37) is a
c-number and the generalized inequality (38) becomes the
celebrated Heisenberg uncertainty relation (δx)2(δp)2 ≥ 1

4
of quantum physics. Making use of the expressions (36) for
x and p in terms of a and a+, we find the uncertainties

(δx)2 = 〈x2〉 − 〈x〉2 = u1 + u2, (39)

(δp)2 = 〈p2〉 − 〈p〉2 = u1 − u2,

where

u1 =
1
2
〈a+a+ aa+〉 − 〈a〉〈a+〉, (40)

u2 = 〈a2〉 − 〈a〉2 + 〈(a+)2〉 − 〈a+〉2.
If one calculates now the mean values in u1 and u2 with
respect to the deformed coherent states |z〉 of the oscilla-
tors a and a+, one finds that u2 = 0, i.e. the deformed
uncertainties are equal:

(δx)2 = (δp)2 =
1
2

expq

(
(q − 1)|z|2) . (41)

This equality of the deformed x, p uncertainties has been
discussed in previous works (see [21] for details). We com-
ment on it here just because it is important for the discus-
sion of the squeezing properties of the states (35). Equa-
tion (41) defines the equal uncertainties (δx)2, (δp)2 as
a function of the positive variables q and |z|2. For any
0 < q < 1 and for any 0 < |z|2 < 1

1−q this function is
bounded by its value with respect to the vacuum (z = 0)

1
2

expq

(
(q − 1)|z|2) < 1

2
. (42)

In the limit |z|2 → 1
1−q the behavior of the function on the

LHS of (42) does not change the validity of this inequality.
It reads explicitly

lim
|z|2→ 1

1−q

1
2

expq

(
(q − 1)|z|2) =

1
2
e−1
q <

1
2
, (43)

where e−1
q = 1

(1+(1−q))∞
q

. The inequality (42) remains valid

also in the limit q → 0 when |z|2 < 1 and one has

lim
q→0

1
2

expq

(
(q − 1)|z|2) =

1
2

1
1 + |z|2 <

1
2
. (44)

According to (41) the deformed coherent states are
states of equal uncertainties only. Minimum uncertainty
states are labeled by the value z for which the q-exponent
in (41) has a minimum. In the limit q → 1− for 0 < |z|2 <
∞ the equality of the undeformed uncertainties in the
Glauber coherent states is recovered. Thus any deformed
coherent state |z, q〉 for 0 ≤ q < 1 and 0 < |z|2 < 1

1−q

is a Robertson intelligent state and is sometimes referred
to in the literature as a squeezed state in the sense of
weak squeezing [22], i.e. (δx)2 < 1

2 , and simultaneously
(δp)2 < 1

2 .
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We proceed further with the discussion of the algebraic
states |ζ, µ, ν, q〉 which reveal stronger squeezing proper-
ties, generalizing thus the undeformed case. It is our aim
first to calculate the uncertainties with respect to these
states and to show that, analogously to the conventional
case, they are not equal since u2 	= 0. For this purpose we
first write the inverse of the linear map in (31)

a =
µ̄

|µ|2 − |ν|2A− ν

|µ|2 − |ν|2A
+, (45)

a+ =
−ν̄

|µ|2 − |ν|2A+
µ

|µ|2 − |ν|2A
+,

where |µ|2−|ν|2 	= 0, being the Jacobian of the linear trans-
formation (31). The next step is to calculate the quantities
u1 and u2 with respect to the coherent states of the bosonic
pairA,A+ in the Hilbert space of the Bargmann–Fock rep-
resentation of these operators.

Exploring the eigenvalue properties of the normalized
coherent eigenstates of A, we simply have

〈ζ|A|ζ〉s = ζ, (46)

〈ζ|A+|ζ〉s = ζ̄,

〈ζ|qN |ζ〉s = 〈ζ|qζ d
dζ |ζ〉s = e(q−1)|ζ|2

q .

To find the mean values in u1,2 with respect to |ζ〉s, we
use the expressions for a, a+ in terms of A,A+ according
to (45) and with the help of (46) we obtain

2u1 =
µ̄µ+ ν̄ν

(|µ|2 − |ν|2)2 expq((q − 1)|ζ|2), (47)

2u2 =
−µ̄ν − ν̄µ

(|µ|2 − |ν|2)2 expq((q − 1)|ζ|2).

Since u2 	= 0, this yields a non-equality of the q-deformed
uncertainties, which read explicitly

(δx)2 =
1
2

|µ− ν|2
(|µ|2 − |ν|2)2 expq

(
(q − 1)|ζ|2) , (48)

(δp)2 =
1
2

|µ+ ν|2
(|µ|2 − |ν|2)2 expq

(
(q − 1)|ζ|2) .

As seen on the RHS of (48) (δx)2 as well as (δp)2 are up
to a corresponding µ-, ν-dependent factor equal to the com-
mutator (positive) mean value 〈[A,A+]〉 in the squeezed
coherent states |ζ〉s, the eigenstates of the operator A.
Since the two pairs of deformed oscillators A,A+ and a, a+

are related by the linear transformation (31) the validity of
relation (33) leaves the commutator i[x, p] = [a, a+] invari-
ant and we thus have (omitting from now on the subscript
s of the deformed state |ζ〉s)

(δx)2 =
1
2

|µ− ν|2
|µ|2 − |ν|2 |〈ζ|[x, p]|ζ〉|, (49)

(δp)2 =
1
2

|µ+ ν|2
|µ|2 − |ν|2 |〈ζ|[x, p]|ζ〉|.

The deformed eigenstates |ζ〉 of the deformed boson oper-
ators’ linear combination depend, in addition to the real
positive deformation parameter q, on the complex param-
eters ζ, µ, ν. Only two of the latter (i.e. four real) are inde-
pendent as a consequence of the eigenvalue equation (35).
They can be chosen in such a way that

|µ− ν|2
|µ|2 − |ν|2 < 1. (50)

Then it follows from (49) that according to the definition
(i) |ζ〉 is a squeezed state in which

(δx)2 <
1
2
|〈ζ|[x, p]|ζ〉|. (51)

Alternatively if
|µ+ ν|2

|µ|2 − |ν|2 < 1, (52)

then (δp)2 < 1
2 |〈ζ|[x, p]|ζ〉|. However in the expressions

(49) for the uncertainties in the eigenstates of the linear
combination of the operators x and p half of the modu-
lus of the mean value of the commutator, 1

2 |〈ζ|[x, p]|ζ〉| =
(|µ|2 −|ν|2)−1 1

2 expq

(
(q − 1)|ζ|2), depends also on the pa-

rameters µ, ν of the linear combination, so it can be large.
We need therefore to make use of the definition (ii) of a
squeezed state requiring one of the variances to be smaller
than the equal uncertainties common minimal value deter-
mined by the equality (41) as the minimum in the variable
z of the q-exponential function. From the above analyses
of the function 1

2 expq

(
(q − 1)|ζ|2) it follows that the min-

imum of this function is the finite limit 1
2

1
(1+(1−q))∞

q
for

|ζ|2 → 1
1−q . Hence according to the expressions (48) |ζ〉 is

a squeezed state if either

1
2

|µ− ν|2
(|µ|2 − |ν|2)2 expq

(
(q − 1)|ζ|2) < 1

2
1

(1 + (1 − q))∞
q

,

(53)
which is satisfied provided the parameters (in general com-
plex) µ, ν of the linear transformation (31) are chosen in
such a way that

0 <
|µ− ν|2

(|µ|2 − |ν|2)2 <
(
1 + (1 − q)2|ζ|2)∞

q

(1 + (1 − q))∞
q

, (54)

and thus the criterion

(δx)2 < (δx)2min (55)

holds. The ratio at the very RHS of (54) is the basic hyper-
geometric series 1Φ0

(
(1 − q)|ζ|2; q, (q − 1)

)
. Alternatively

from (48)

1
2

|µ+ ν|2
(|µ|2 − |ν|2)2 expq

(
(q − 1)2|ζ|2) < 1

2
1

(1 + (1 − q))∞
q

(56)
is satisfied if

0 <
|µ+ ν|2

(|µ|2 − |ν|2)2 <
(
1 + (1 − q)2|ζ|2)∞

q

(1 + (1 − q))∞
q

, (57)
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which gives
(δp)2 < (δp)2min. (58)

For 0 < q < 1 the values µ = ±ν are not admissible. The
inequality (55) (or (58)) together with the condition (54)
(or (57)) for the parameters µ, ν, ζ, q define the eigenstates
|ζ〉 of the linear combination µa+νa+ of the deformed bo-
son operators as generalized squeezed states. In the limit
q → 1− the corresponding expressions for the x, p uncer-
tainties with respect to the conventional harmonic oscilla-
tor squeezed states [17] are recovered. This analogy with
the squeezing properties of the quadratures of the boson
creation and annihilation operators justifies, in our opin-
ion, the proposed definition of a q-deformed squeezed state
in (35) as a q-generalization of the conventional squeezed
states.

In the deformed uncertainty relation (38) the variances
of the operators x and p enter. For two Hermitian operators
a third second moment, their covariance in any state, is
defined by

δ(xp) =
1
2
〈xp+ px〉 − 〈x〉〈p〉. (59)

As can be readily verified the covariance δ(xp) of the
quadratures (36) x and p in the deformed boson oscillator
coherent state |z〉 is equal to zero. If we calculate now the
x–p covariance in the deformed states |ζ, µ, ν〉 we obtain

δxp =
Im(µν̄)

|µ|2 − |ν|2 |〈[x, p]〉s|

=
Im(µν̄)

(|µ|2 − |ν|2)2 expq

(
(q − 1)|ζ|2) . (60)

As seen from (60) the x–p covariance in the deformed
squeezed states for complex µ, ν is not zero. It vanishes in
the particular case of real µ, ν.

For Hermitian operators with a non-vanishing covari-
ance the Robertson–Heisenberg uncertainty relation be-
comes the Schrödinger inequality in any state

(δx)2(δp)2 − (δxp)2 ≥ 1
4
|〈[x, p]〉|2. (61)

One can further verify that the three second moments in
the deformed squeezed states as given by (48) and (60)
satisfy the equality

(δx)2(δp)2 − (δxp)2 =
1
4
|〈ζ[x, p]ζ〉|2. (62)

The q-deformed squeezed states |ζ, µ, ν〉 thus minimize the
Schrödinger uncertainty relation for the deformed quadra-
tures and are, in fact, generalized Schrödinger intelligent
states [20].

4 Physical applications

We consider a diffusion process with n species on a chain
of L sites with nearest-neighbor interaction with exclu-
sion, i.e. a site can be either empty or occupied by a par-
ticle of a given type. In the set of occupation numbers

(s1, s2, . . . , sL) specifying a configuration of the system
si = 0 if a site i is empty, si = 1 if there is a first-type
particle at a site i, . . . , si = n− 1 if there is an (n− 1)th-
type particle at a site i. On successive sites the species
i and k exchange places with probability gikdt, where
i, k = 0, 1, 2, . . . , n − 1. With i < k, gik are the proba-
bility rates of hopping to the left, and gki to the right.
The event of exchange occurs if out of two adjacent sites
one is a vacancy and the other is occupied by a particle,
or each of the sites is occupied by a particle of a different
type. The n-species symmetric simple exclusion process is
known as the lattice gas model of particle hopping between
nearest-neighbor sites with a constant rate gik = gki = g.
The n-species asymmetric simple exclusion process with
hopping in a preferred direction is the diffusion-driven lat-
tice gas of particles moving under the action of an external
field. The process is totally asymmetric if all jumps occur
in one direction only, and partially asymmetric if there
is a different non-zero probability of both left and right
hopping. The number of particles ni of each species in the
bulk is conserved and this is the case of periodic boundary
conditions. In the case of open systems, the lattice gas is
coupled to external reservoirs of particles of fixed density.
In most studied examples one considers phase transitions
inducing boundary processes when a particle of type k,
k = 1, 2, . . . , n−1 is added with a rate L0

k and/or removed
with a rate Lk

0 at the left end of the chain, and it is re-
moved with a rate Rk

0 and/or added with a rate R0
k at the

right end of the chain.
In the matrix-product states approach the boundary

rate matrices define the boundary vectors with respect
to which the stationary probability distribution is related
to an expectation value of product of matrices obeying
the quadratic algebra (4). The problem to be solved is to
find matrix representations of the quadratic algebra con-
sistent with the boundary conditions (7), namely that the
combinations (Lk

iDk +xi) and (Rk
iDk −xi) have common

vectors with eigenvalue zero, where the only non-vanishing
boundary rates areLk

0 , L
0
k, R

k
0 , R

0
k, k = 1, 2, . . . , n−1. Once

this problem is solved important physical quantities like
correlation functions, currents, density profiles can be ob-
tained which is the advantage of the matrix-product states
approach. Despite the extensive study of simple general-
izations of the exclusion process solutions of systems of
n-species is lacking.

We are implementing here the deformed squeezed states
introduced and studied in the previous section and the de-
formed coherent states to obtain a solution to the general
n boundary value problem.

4.1 Deformed squeezed and coherent state solution
of the boundary problem for the n-species process

The algebra for the n-species open asymmetric exclusion
process of a diffusion system coupled at both boundaries
to external reservoirs of particles of fixed density has the
form

Dn−1D0 − qD0Dn−1 =
x0

gn−1,0
Dn−1 − xn−1

gn−1,0
D0,
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D0Dk − qkDkD0 = −x0

gk
Dk, (63)

DkDn−1 − qkDn−1Dk =
xn−1

gk
,

DkDl − q−1
kl DlDk = 0,

where k, l = 1, 2, . . . , n− 2, x0 + xn−1 = 0 and

q =
g0,n−1

gn−1,0
, qkl =

gkl

glk
, qk =

gk0

g0k
=
gn−1,k

gk,n−1
. (64)

The equalities in the last formula, together with the rela-
tions

gk = g0k = gk,n−1,

g0k − gk0 = gk,n−1 − gn−1,k = g0,n−1 − gn−1,0, (65)

yield a mapping to the commutation relations of a q-
deformed Heisenberg algebra (see (10)) of n−1 oscillators
ak, a

+
k , k = 0, 1, 2, . . . , n − 2. A solution is obtained by a

shift of the oscillators a0, a
+
0

D0 =
x0

gn−1,0

(
1

1 − q
+

a+
0√

1 − q

)
, (66)

Dn−1 =
−xn−1

gn−1,0

(
1

1 − q
+

a√
1 − q

)
,

and by the identification of the rest of the generators Dk,
k = 1, 2, . . . , n − 2 with the remaining n − 2 creation op-
erators a+

k :
Dk = a+

k , k 	= 0. (67)

For the phase transition inducing boundary processes,
when a particle of type k is added with a rate L0

k and
removed with a rate Lk

0 at the left end of the chain and
when it is removed with a rate Rk

0 and added with a rate
R0

k at the right end of the chain, the boundary vectors are
defined by the systems of equations

〈w|((−L0
1 − L0

2 − . . .− L0
n−1)D0

+ L1
0D1 + L2

0D2 + . . .+ Ln−1
0 Dn−1 + x0) = 0, (68)

〈w|(L0
1D0 − L1

0D1) = 0,

〈w|(L0
2D0 − L2

0D2) = 0,

...

〈w|(L0
n−2D0 − Ln−2

0 Dn−2) = 0,

〈w|(L0
n−1D0 − Ln−1

0 Dn−1 + xn−1) = 0,

and

((−R0
1 −R0

2 − . . .−R0
n−1)D0 +R1

0D1

+R2
0D2 + . . .+Rn−1

0 Dn−1 − x0)|v〉 = 0, (69)

(R0
1D0 −R1

0D1)|v〉 = 0,

(R0
2D0 −R2

0D2)|v〉 = 0,

...

(R0
n−2D0 −Rn−2

0 Dn−2)|v〉 = 0,

(R0
n−1D0 −Rn−1

0 Dn−1 − xn−1)|v〉 = 0.

The two systems are similar and can be solved by the same
procedure. From the second to the last but one equation
in (68) and (69), one has

〈w|Lk
0Dk = 〈w|L0

kD0, (70)

Rk
0Dk|v〉 = R0

kD0|v〉, (71)

for k = 1, 2, . . . n − 2. Hence one inserts (70) in the first
equation of the system (68) and (71) in the first equation
of the system (69) to obtain in both cases an equation
that coincides with the last equation of the correspondings
systems.

Thus the system for the left and right boundary vectors
are reduced to the pair of equations

〈w|(L0
n−1D0 − Ln−1

0 Dn−1) = 〈w|, (72)

(Rn−1
0 Dn−1 −R0

n−1D0)|v〉 = |v〉.
Making use of the explicit solution for Dn−1 and D0 as
shifted deformed oscillators (with x0 = −x1 = 1), we
rewrite (72) as

(Rn−1
0 a0 −R0

n−1a
+
0 )|v〉

=
√

1 − q

(
gn−1,0 − Rn−1

0 −R0
n−1

1 − q

)
|v〉, (73)

〈w|(L0
n−1a

+
0 − Ln−1

0 a0)

= 〈w|
(
gn−1,0 − L0

n−1 − Ln−1
0

1 − q

)√
1 − q.

The latter equations, in accordance with (35), determine
the boundary vectors as squeezed coherent states of the de-
formed boson operators a0, a

+
0 corresponding to the eigen-

values

v =
√

1 − q

(
gn−1,0 − Rn−1

0 −R0
n−1

1 − q

)
, (74)

w =
√

1 − q

(
gn−1,0 − L0

n−1 − Ln−1
0

1 − q

)
.

The explicit form of these vectors is readily written, namely

〈w| = 〈n|
∞∑

n=0

wn√
[n]!

e
− 1

2 vw
q and |v〉 = e

− 1
2 vw

q

∞∑
n=0

vn√
[n]!

|n〉.

We therefore conclude to the following.
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The left and right boundary vectors are squeezed co-
herent states of the shifted deformed annihilation and cre-
ation operatorsDn−1 andD0, associated with the non-zero
boundary parameters xn−1 and x0, and with eigenvalues
depending on the right and left boundary rates:

(Rn−1
0 a0 −R0

n−1a
+
0 )|v〉 = A|v〉 = v|v〉, (75)

〈w|(L0
n−1a

+
0 − Ln−1

0 a) = 〈w|A+ = 〈w|w,

where the eigenvalues v and w are given by (74).
The operators A and A+ satisfy the same deformed

commutation relation as a and a+, as was outlined in
Sect. 3, with the only difference that they are not Her-
mitian conjugate. However, their conjugation property is
consistent with the involution of the quadratic algebra (4)
which reflects the left–right symmetry of the model. From
the inverse linear maps, with Rn−1

0 L0
n−1 −Ln−1

0 R0
n−1 	= 0,

we obtain

a0 =
L0

n−1

Rn−1
0 L0

n−1 − Ln−1
0 R0

n−1
A

+
R0

n−1

Rn−1
0 L0

n−1 − Ln−1
0 R0

n−1
A+, (76)

a+
0 =

Rn−1
0

Rn−1
0 L0

n−1 − Ln−1
0 R0

n−1
A+

+
Ln−1

0

Rn−1
0 L0

n−1 − Ln−1
0 R0

n−1
A,

with the help of which the mean values of the generators
D0, Dn−1 and the restDk for k = 1, 2, . . . , n−2 are readily
found:

〈w|D0|v〉

=
1

gn−1,0(Rn−1
0 L0

n−1 − Ln−1
0 R0

n−1)

×
(

1
1 − q

+
Rn−1

0 w + Ln−1
0 v√

1 − q

)
, (77)

〈w|Dn−1|v〉

=
1

gn−1,0(Rn−1
0 L0

n−1 − Ln−1
0 R0

n−1)

×
(

1
1 − q

+
R0

n−1w + L0
n−1v√

1 − q

)
,

〈w|Dk|v〉 =
L0

k

Lk
0
〈w|D0|v〉 =

R0
k

Rk
0
〈w|D0|v〉.

With these expressions at hand, it is easy to calculate the
expectation value of any monomial of the form 〈w|Ds1

Ds2 . . . DsL|v〉 (where Dsi
= Dj for i = 1, 2, . . . , L, j =

0, 1, 2, . . . , n− 1), which enters the stationary probability
distribution, the current, and the correlation functions.
One first makes use of the algebra to bring all generators

Dk for k = 1, 2, . . . , n− 2 to the very right or to the very
left, which results in an expression of the expectation value
as a power in D0 and Dn−1. Then one writes the arbitrary
power of D0, Dn−1 as a normally ordered product of A
and A+ to obtain, upon using the eigenvalue properties
of the latter, an expression for the relevant physical quan-
tity in terms of the probability-rate-dependent boundary
eigenvalues v and w.

We note that if the boundary processes are such that
there are only incoming particles of (n− 1)th-type at the
left boundary and only outgoing (n−1)th-type particles at
the right boundary, i.e. Ln−1

0 = R0
n−1 = 0 in (75), then the

eigenstate equations define the boundary vectors |v〉 and
〈w| as q-deformed coherent states. Using the eigenvalue
properties of the latter one can likewise obtain the physical
quantities of interest for the system. The value q 	= 0
corresponds to a partially asymmetric and q = 0 to a
totally asymmetric diffusion in the bulk of the n− 1-type
particle. The deformed oscillator coherent states defined
for 0 < q < 1 and for q = 0 provide a unified description
of both the partially and the totally asymmetric hopping
of a given type of particle.

4.2 Example: The two-species model with incoming
and outgoing particles at both boundaries

As an example we consider the two-species partially asym-
metric simple exclusion process. We simplify the notation,
namely at the left boundary a particle can be added with
probability αdt and removed with probability γdt, and at
the right boundary it can be removed with probability βdt
and added with probability δdt. The system is described
by the configuration set s1, s2, . . . , sL where si = 0 if a site
i = 1, 2, . . . , L is empty and si = 1 if a site i is occupied
by a particle. The particles hop with a probability g01dt
to the left and with a probability g10dt to the right, where
without loss of generality we can choose the right probabil-
ity rate g10 = 1 and the left probability rate g01 = q. The
quadratic algebra D1D0 − qD0D1 = D0 +D1 is solved by
a pair of deformed oscillators a, a+ (see (67) with n = 2).
The boundary conditions have the form

(βD1 − δD0)|v〉 = |v〉, (78)

〈w|(αD0 − γD1) = 〈w|.

For a given configuration (s1, s2, . . . , sL) the stationary
probability is given by the expectation value

P (s) =
〈w|Ds1Ds2 . . . DsL

|v〉
ZL

, (79)

where Dsi
= D1 if a site i = 1, 2, . . . , L is occupied and

Dsi = D0 if a site i is empty and ZL = 〈w|(D0 +D1)L|v〉
is the normalization factor to the stationary probability
distribution. Within the matrix-product ansatz, one can
also evaluate physical quantities such as the current J
through a bond between site i and site i + 1, the mean
density 〈si〉 at a site i, the two-point correlation function
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〈sisj〉:

J =
ZL−1

ZL
, (80)

〈si〉 =
〈w|(D0 +D1)i−1D1(D0 +D1)L−i|v〉

ZL
,

〈sisj〉 =

〈w|(D0 + D1)i−1D1(D0 + D1)j−i−1D1(D0 + D1)L−j |v〉
ZL

,

and higher correlation functions.
In terms of the deformed boson operators the boundary

conditions read

(βa− δa+)|v〉 =
√

1 − q

(
1 − β − δ

1 − q

)
|v〉 (81)

〈w|(αa+ − γa) = 〈w|
(

1 − α− γ

1 − q

)√
1 − q.

Hence, according to (35), the boundary vectors |v〉 and 〈w|
are squeezed coherent states, eigenstates of an annihilation
and a creation operator A,A+:

(βa− δa+)|v〉 = A|v〉 = v|v〉, (82)

〈w|(αa+ − γa) = 〈w|A+ = 〈w|w,
corresponding to the eigenvalues

v(β, δ) =
√

1 − q

(
1 − β − δ

1 − q

)
, (83)

w(α, γ) =
√

1 − q

(
1 − α− γ

1 − q

)
.

The explicit form of the (unnormalized) vectors in the
oscillator Fock space representation is given by 〈w| =∑∞

n=0
wn(α,γ)√

[n]!
|n〉, |v〉 =

∑∞
n=0

vn(β,δ)√
[n]!

|n〉. As already noted

the operators A and A+ are not each other’s Hermitian
conjugate. To find the expectation values of normally or-
dered monomials inD0 andD1, we make use of the inverse
transformation

a =
α

αβ − γδ
A+

δ
αβ − γδ

A+, (84)

a+ =
β

αβ − γδ
A+ +

γ

αβ − γδ
A.

Hence with ∆ = αβ − γδ 	= 0

D0 +D1 =
2

1 − q
+

α+ γ

∆
√

1 − q
A+

β + δ

∆
√

1 − q
A+, (85)

and the normalization factor 〈w|(D0 +D1)L|v〉 to the sta-
tionary probability distribution can easily be calculated in
terms of the operators A and A+. One has

(D0 +D1)L =
(

2
1 − q

+
α+ γ

∆
√

1 − q
A+

β + δ

∆
√

1 − q
A+
)L

=
L∑

m=0

L!
m!(L−m)!

2L−m∆−m

(1 − q)L− m
2

×((α+ γ)A+ (β + δ)A+)m. (86)

To evaluate the above expression one makes use of the
eigenvalue properties of the squeezed states 〈w| and |v〉.
For this purpose one first applies the procedure for normal
ordering of polynomials in A, A+ outlined in Sect. 4.3.
The difference with the normalization factor for boundary
processes with only incoming particles at the left end and
only outgoing particles at the right end evaluated there
is that here one has to normally order boson operators
whose deformed commutator is not normalized to unity.
This results in the formula

((α+ γ)A+ (β + δ)A+)m

=
[m/2]∑
k=0

Sm
k (α+ γ)k(β + δ)k

m−2k∑
l=0

[m− 2k]!
[l]![m− 2k − l]!

×((β + δ)A+)l((α+ γ)A)m−2k−l (87)

One explores next the eigenvalue properties of the oper-
ators A,A+ with respect to the vectors |v〉 and 〈w| and
finds the normalization factor 〈w|(D0 +D1)L|v〉 = ZL to
the stationary probability distribution:

ZL =
L∑

m=0

(
L

m

)
2L−m

(1 − q)L− m
2

×
[m/2]∑
k=0

m−2k∑
l=0

S(k)
m

(α+ γ)k(β + δ)k

(αβ − γδ)m

(
m− 2k

l

)
q

×((β + δ)w)l((α+ γ)v)m−2k−l. (88)

Consequently one directly obtains an expression for the
current J . We note that an explicit formula for the nor-
malization factor to the stationary probability distribu-
tion (and hence for the current) of the two-species diffu-
sion system with incoming and outgoing particles at both
boundaries has not been written elsewhere. Using the pre-
scription of normal ordering, one can readily calculate the
correlation functions and any other quantity of interest like
density profiles, etc. Since none of the physical quantities
of interest for this process have been presented elsewhere,
this strongly supports the squeezed coherent state solution
as a powerful method for the study of stochastic systems.

4.3 Example: The two-species asymmetric simple
exclusion process, with only incoming particles
at the left boundary and only outgoing particles
at the right one

The model is exactly solvable through the matrix-product
states approach [8, 23].

We comment on it here for the reason of just stress-
ing the utility of the q-deformed oscillator coherent states
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which provide the most simple and convenient approach
to an unified solution of both the partially and the totally
asymmetric processes. In the partially asymmetric case the
probability rate of hopping to the left is g01 = q while the
right probability rate is g10 = 1. The totally asymmetric
exclusion process of particles hopping to the right only is
obtained for q = 0. At the left boundary a particle can be
added with a probability αdt and it can be removed at the
right boundary with a probability βdt. The quadratic al-
gebra is generated by an unit and two generators obeying
the following relations.
Case A. The partially asymmetric simple exclusion process
(0 < q < 1)

D1D0 − qD0D1 = D0 +D1. (89)

Case B. The totally asymmetric simple exclusion process
(q = 0)

D1D0 = D0 +D1, (90)

with the same boundary conditions defining in both cases
the boundary vectors 〈w| and |v〉:

〈w|D0 = 〈w| 1
α
, D1|v〉 =

1
β

|v〉. (91)

The algebraic solutions (with the corresponding boundary
problems) for the partially and for the totally asymmetric
cases are of the form of shifted deformed oscillators for a
real parameter 0 < q < 1 and for q = 0, respectively.
Case A.

D0 =
1

1 − q
+

a+
√

1 − q
, (92)

D1 =
1

1 − q
+

a√
1 − q

.

To solve the boundary problem we choose the vector |v〉
to be the (unnormalized!) eigenvector of the annihilation
operator a for a real value of the parameter v and the vector
〈w| to be the eigenvector (unnormalized and different from
the conjugated one) of the creation operator for the real
parameter w:

|v〉 = e
− 1

2 vw
q eva+

q |0〉, 〈w| = 〈0|ewa
q e

− 1
2 wv

q . (93)

The factor e− 1
2 vw

q in (93) is due to the condition 〈w|v〉 = 1,
which is a convenient choice in physical applications. Ac-
cording to the algebraic solution, these are also eigenvec-
tors of the shifted operators with the corresponding rela-
tions of the eigenvalues

1
α

=
1

1 − q
+

w√
1 − q

, (94)

1
β

=
1

1 − q
+

v√
1 − q

.

Hence the boundary vectors |v〉 and 〈w| are a subset of
the coherent states of the q-deformed Heisenberg algebra,
labelled by the positive real parameters v(α, q) and w(β, q)

defined in (94). The relation of the boundary vectors to the
coherent states simplifies the calculation of the stationary
probability distribution. Since, according to the algebraic
solution,

(D0 +D1)L =
(

2
1 − q

+
a+ + a√

1 − q

)L

(95)

=
L∑

m=0

L!
m!(L−m)!

2L−m

(1 − q)L−m(
√

1 − q)m
(a+ + a)m,

in order to find the expectation values with respect to the
coherent states, one has to normally order the mth power
of the linear combination a + a+, using aa+ − qa+a = 1.
This is achieved with the help of the Stirling numbers

(a++a)m =
[m/2]∑
k=0

S(k)
m

m−2k∑
l=0

[m− 2k]!
[l]![m− 2k − l]!

(a+)lam−2k−l,

(96)
where the q-deformed Stirling numbers S(k)

m satisfy the
recurrence relation

S
(k)
m+1 = [k]S(k)

m + S(k−1)
m , (97)

with S(0)
m = δ0m, S(1)

m = S
(m)
m = 1 and S(m−1)

m =
∑i=m−1

i=1 [i].
For the correlation functions one also needs the expressions

aka+ = qka+ak + [k]ak−1, (98)

a(a+)k = qk(a+)ka+ [k](a+)k−1.

Using these relations one can easily find the relevant phys-
ical quantities of the system. Thus for the normalization
factor ZL one obtains

〈w|(D0 +D1)L|v〉

=
L∑

m=0

L!
m!(L−m)!

2L−m

(1 − q)L− m
2

(99)

×
[m/2]∑
k=0

m−2k∑
l=0

S(k)
m

[m− 2k]!
[l]![m− 2k − l]!

wlvm−2k−l.

It can be verified, after rescaling the parameters v and
w by 1√

1−q
, that this expression coincides with the one

evaluated in [23] up to the factor 〈w|v〉, which is chosen
there to be 〈w|v〉 	= 1.
Case B.

D0 = 1 + a+
q=0, (100)

D1 = 1 + aq=0.

As the algebra itself, the solution (100) and the bound-
ary vectors are also obtained as the limit q → 0 of the
q-dependent solution and eigenvectors where the repre-
sentation of the oscillator operators in (100) is found from
(13) with q = 0, namely a+|n〉 = |n + 1〉, a|n〉 = |n − 1〉
and

w =
1 − α

α
, v =

1 − β

β
. (101)
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Hence the boundary vectors have the form

〈w| = 〈n|
∞∑

n=0

(
1 − α

α

)n( 1
α

+
1
β

− 1
αβ

) 1
2

,

|v〉 =
(

1
α

+
1
β

− 1
αβ

) 1
2 ∞∑

n=0

(
1 − β

β

)n

|n〉. (102)

The physical quantities of the model are readily obtained
from the partially asymmetric case in the limit q → 0.
Equation (96) becomes simply

(a+ a+)L
∣∣
q=0 =

[m/2]∑
k=0

S(k)
m

∣∣
q=0

m−2k∑
l=0

(a+
q=0)

l(aq=0)m−2k−l,

(103)
where now

S
(k)
m+1

∣∣
q=0 = S(k)

m

∣∣
q=0+S(k−1)

m

∣∣
q=0 and S(m−1)

m

∣∣
q=0 = m−1.

The expression for ZL becomes

〈w|(D0 +D1)L|v〉 (104)

=
L∑

m=0

2l−mL!
m!(L−m)!

[m/2]∑
k=0

m−2k∑
l=0

S(k)
m |q=0w

lvm−2k−l.

Inserting in (104) the expressions for v and w in terms of
α and β from (101), it can be verified, after some algebra,
that it coincides with the expression for the normalization
factor obtained in [8] (as the current and the correlation
functions do coincide too). The coherent-state description
thus provides an unified solution of the partially and fully
asymmetric simple exclusion models.

To summarize, we have suggested and studied deformed
boson oscillator squeezed coherent states as eigenstates
of linear combinations of deformed annihilation and cre-
ation operators. The analyses of their properties show that
they exibit squeezing properties like the canonical squeezed
states and can thus be considered as the q-analogues of the
canonical harmonic oscillator squeezed states. We have ap-
plied the q-deformed squeezed and coherent states to ob-
tain within the matrix-product states approach a bound-
ary problem solution to a multiparticle (general n) open
stochastic system of lattice Brownian motion. We have
shown that depending on the boundary processes, the
boundary vectors are either deformed coherent or deformed
squeezed states of the deformed oscillator algebra used
for the solution. The coherent states provide an unified
description of both the partially and the fully asymmet-
ric cases, the solution of the fully asymmetric one being
obtained in the limit q → 0 of the deformation param-
eter q. The discussed deformed squeezed- and coherent-
state solution of the boundary problem for the n-species
stochastic diffusion process is proposed as a generaliza-
tion of the known examples within the matrix-product

states approach. We emphasize that in the two-species ex-
ample solved by means of the deformed squeezed states
the expression for the normalization factor to the station-
ary probability distribution (and hence for the current)
have not been presented elswhere; this strongly supports
the squeezed coherent boundary solution as a convenient
method for studying the stochastic diffusion systems. In
applying the deformed squeezed states, however, we have
utilized their eigenvalue properties only and not explored
their squeezing properties. The squeezing condition relates
all the parameters involved in the processess and in our
opinion, it is worth studying the consequences of squeezing
on the stochastic dynamics.
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